Survey of Business Owners (SBO)
Before its replacement in 2018 by the Annual Business Survey, nearly every tax-filing sole proprietorship, partnership, and corporation nationwide completed this questionnaire, with 2007 the only microdata year.
One table with one row per firm per state per industry, except eight collapsed geographies.
A complex sample survey designed to generalize to most firms in the United States, public microdata includes classifiable (non-identifiable) firms, i.e. nearly all businesses but only about half of workers.
Released quinquennially from 1972 until 2012 in the Economic Census with no updates expected.
Administered by the U.S. Census Bureau. Annual Business Survey now conducted jointly with the National Center for Science and Engineering Statistics within the National Science Foundation.
Please skim before you begin:
2007 Survey of Business Owners (SBO) Public Use Microdata Sample (PUMS) Data Users Guide
A haiku regarding this microdata:
Function Definitions
This survey uses a dual design variance estimation technique described in the Data Users Guide. Most users do not need to study these functions carefully. Define functions specific to only this dataset:
sbo_MIcombine <-
function( x , adjustment = 1.992065 ){
# pull the structure of a variance-covariance matrix
variance.shell <- suppressWarnings( vcov( x$var[[1]] ) )
# initiate a function that will overwrite the diagonals.
diag.replacement <-
function( z ){
diag( variance.shell ) <- coef( z )
variance.shell
}
# overwrite all the diagonals in the variance this_design object
coef.variances <- lapply( x$var , diag.replacement )
# add then divide by ten
midpoint <- Reduce( '+' , coef.variances ) / 10
# initiate another function that takes some object,
# subtracts the midpoint, squares it, divides by ninety
midpoint.var <- function( z ){ 1/10 * ( ( midpoint - z )^2 / 9 ) }
# sum up all the differences into a single object
variance <- Reduce( '+' , lapply( coef.variances , midpoint.var ) )
# adjust every number with the factor in the user guide
adj_var <- adjustment * variance
# construct a result that looks like other sbo_MIcombine methods
rval <-
list(
coefficients = coef( x$coef ) ,
variance = adj_var
)
# call it an MIresult class, like other sbo_MIcombine results
class( rval ) <- 'MIresult'
rval
}
sbo_with <-
function ( this_design , expr , ... ){
pf <- parent.frame()
expr <- substitute( expr )
expr$design <- as.name(".design")
# this pulls in means, medians, totals, etc.
# notice it uses this_design$coef
results <- eval( expr , list( .design = this_design$coef ) )
# this is used to calculate the variance, adjusted variance, standard error
# notice it uses the this_design$var object
variances <-
lapply(
this_design$var$designs ,
function( .design ){
eval( expr , list( .design = .design ) , enclos = pf )
}
)
# combine both results..
rval <- list( coef = results , var = variances )
# ..into a brand new object class
class( rval ) <- 'imputationResultList'
rval
}
sbo_subset <-
function( x , ... ){
# subset the survey object
coef.sub <- subset( x$coef , ... )
# replicate `var.sub` so it's got all the same attributes as `x$var`
var.sub <- x$var
# but then overwrite the `designs` attribute with a subset
var.sub$designs <- lapply( x$var$designs , subset , ... )
# now re-create the `sbosvyimputationList` just as before..
sub.svy <-
list(
coef = coef.sub ,
var = var.sub
)
# ..and give it the same class
sub.svy$call <- sys.call(-1)
sub.svy
}
sbo_update <-
function( x , ... ){
# update the survey object that's going to be used for
# means, medians, totals, etc.
coef.upd <- update( x$coef , ... )
# replicate `var.upd` so it's got all the same attributes as `x$var`
var.upd <- x$var
# but then overwrite the `designs` attribute with an update
var.upd$designs <- lapply( x$var$designs , update , ... )
# now re-create the `sbosvyimputationList` just as before
upd.svy <-
list(
coef = coef.upd ,
var = var.upd
)
upd.svy
}
sbo_degf <- function( x ) degf( x$coef )
Download, Import, Preparation
Download and import the file containing records for both coefficient estimates and variance estimation:
library(httr)
library(readr)
tf <- tempfile()
this_url <- "https://www2.census.gov/programs-surveys/sbo/datasets/2007/pums_csv.zip"
GET( this_url , write_disk( tf ) , progress() )
sbo_tbl <- read_csv( tf )
sbo_df <- data.frame( sbo_tbl )
names( sbo_df ) <- tolower( names( sbo_df ) )
sbo_df[ , 'one' ] <- 1
Calculate the weights used for variance estimation:
Add business ownership percentages for both gender and ethnicity:
# replace percent missings with zeroes
for( i in 1:4 ) sbo_df[ is.na( sbo_df[ , paste0( 'pct' , i ) ] ) , paste0( 'pct' , i ) ] <- 0
# sum up ownership ethnicity and gender
sbo_df[ , 'hispanic_pct' ] <- sbo_df[ , 'nonhispanic_pct' ] <- 0
sbo_df[ , 'male_pct' ] <- sbo_df[ , 'female_pct' ] <- 0
# loop through the first four owners' ethnicity and sex variables
for( i in 1:4 ) {
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'H' , 'hispanic_pct' ] <-
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'H' , 'hispanic_pct' ] +
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'H' , paste0( 'pct' , i ) ]
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'N' , 'nonhispanic_pct' ] <-
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'N' , 'nonhispanic_pct' ] +
sbo_df[ sbo_df[ , paste0( 'eth' , i ) ] %in% 'N' , paste0( 'pct' , i ) ]
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'M' , 'male_pct' ] <-
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'M' , 'male_pct' ] +
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'M' , paste0( 'pct' , i ) ]
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'F' , 'female_pct' ] <-
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'F' , 'female_pct' ] +
sbo_df[ sbo_df[ , paste0( 'sex' , i ) ] %in% 'F' , paste0( 'pct' , i ) ]
}
Save Locally
Save the object at any point:
# sbo_fn <- file.path( path.expand( "~" ) , "SBO" , "this_file.rds" )
# saveRDS( sbo_df , file = sbo_fn , compress = FALSE )
Load the same object:
Survey Design Definition
Construct a multiply-imputed, complex sample survey design:
library(survey)
library(mitools)
# break random groups into ten separate data.frame objects within a list
var_list <- NULL
for( i in 1:10 ) { var_list <- c( var_list , list( subset( sbo_df , rg == i ) ) ) }
sbo_coef <-
svydesign(
id = ~ 1 ,
weight = ~ tabwgt ,
data = sbo_df
)
sbo_var <-
svydesign(
id = ~ 1 ,
weight = ~ newwgt ,
data = imputationList( var_list )
)
sbo_design <- list( coef = sbo_coef , var = sbo_var )
class( sbo_design ) <- 'sbosvyimputationList'
Variable Recoding
Add new columns to the data set:
sbo_design <-
sbo_update(
sbo_design ,
established_before_2000 =
ifelse( established %in% c( '0' , 'A' ) , NA , as.numeric( established < 4 ) ) ,
healthins =
factor( healthins , levels = 1:2 ,
labels = c( "offered health insurance" , "did not offer health insurance" )
) ,
hispanic_ownership =
factor(
ifelse( hispanic_pct == nonhispanic_pct , 2 ,
ifelse( hispanic_pct > nonhispanic_pct , 1 ,
ifelse( nonhispanic_pct > hispanic_pct , 3 , NA ) ) ) ,
levels = 1:3 ,
labels = c( 'hispanic' , 'equally hisp/non' , 'non-hispanic' )
) ,
gender_ownership =
factor(
ifelse( male_pct == female_pct , 2 ,
ifelse( male_pct > female_pct , 1 ,
ifelse( female_pct > male_pct , 3 , NA ) ) ) ,
levels = 1:3 ,
labels = c( 'male' , 'equally male/female' , 'female' )
)
)
Analysis Examples with the survey
library
Unweighted Counts
Count the unweighted number of records in the survey sample, overall and by groups:
Descriptive Statistics
Calculate the mean (average) of a linear variable, overall and by groups:
sbo_MIcombine( sbo_with( sbo_design , svymean( ~ receipts_noisy ) ) )
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ receipts_noisy , ~ gender_ownership , svymean )
) )
Calculate the distribution of a categorical variable, overall and by groups:
sbo_MIcombine( sbo_with( sbo_design , svymean( ~ n07_employer , na.rm = TRUE ) ) )
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ n07_employer , ~ gender_ownership , svymean , na.rm = TRUE )
) )
Calculate the sum of a linear variable, overall and by groups:
sbo_MIcombine( sbo_with( sbo_design , svytotal( ~ receipts_noisy ) ) )
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ receipts_noisy , ~ gender_ownership , svytotal )
) )
Calculate the weighted sum of a categorical variable, overall and by groups:
sbo_MIcombine( sbo_with( sbo_design , svytotal( ~ n07_employer , na.rm = TRUE ) ) )
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ n07_employer , ~ gender_ownership , svytotal , na.rm = TRUE )
) )
Calculate the median (50th percentile) of a linear variable, overall and by groups:
sbo_MIcombine( sbo_with( sbo_design ,
svyquantile(
~ receipts_noisy ,
0.5 , se = TRUE
) ) )
sbo_MIcombine( sbo_with( sbo_design ,
svyby(
~ receipts_noisy , ~ gender_ownership , svyquantile ,
0.5 , se = TRUE ,
ci = TRUE
) ) )
Estimate a ratio:
Subsetting
Restrict the survey design to jointly owned by husband and wife:
Calculate the mean (average) of this subset:
Measures of Uncertainty
Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:
this_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svymean( ~ receipts_noisy )
) )
coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )
grouped_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ receipts_noisy , ~ gender_ownership , svymean )
) )
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )
Calculate the degrees of freedom of any survey design object:
Calculate the complex sample survey-adjusted variance of any statistic:
Include the complex sample design effect in the result for a specific statistic:
# SRS without replacement
sbo_MIcombine( sbo_with( sbo_design ,
svymean( ~ receipts_noisy , deff = TRUE )
) )
# SRS with replacement
sbo_MIcombine( sbo_with( sbo_design ,
svymean( ~ receipts_noisy , deff = "replace" )
) )
Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See ?svyciprop
for alternatives:
Regression Models and Tests of Association
Perform a design-based t-test:
Perform a chi-squared test of association for survey data:
Perform a survey-weighted generalized linear model:
glm_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svyglm( receipts_noisy ~ established_before_2000 + n07_employer )
) )
glm_result
Replication Example
This example matches the statistics and relative standard errors from three Appendix B columns:
hispanic_receipts_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ receipts_noisy , ~ hispanic_ownership , svytotal )
) )
hispanic_payroll_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ payroll_noisy , ~ hispanic_ownership , svytotal )
) )
hispanic_employment_result <-
sbo_MIcombine( sbo_with( sbo_design ,
svyby( ~ employment_noisy , ~ hispanic_ownership , svytotal )
) )
Estimates at the U.S. Level using the PUMS Tables for:
stopifnot( round( coef( hispanic_receipts_result )[ 'hispanic' ] , 0 ) == 350763923 )
stopifnot( round( coef( hispanic_receipts_result )[ 'equally hisp/non' ] , 0 ) == 56166354 )
stopifnot( round( coef( hispanic_receipts_result )[ 'non-hispanic' ] , 0 ) == 10540609303 )
stopifnot( round( coef( hispanic_payroll_result )[ 'hispanic' ] , 0 ) == 54367702 )
stopifnot( round( coef( hispanic_payroll_result )[ 'equally hisp/non' ] , 0 ) == 11083148 )
stopifnot( round( coef( hispanic_payroll_result )[ 'non-hispanic' ] , 0 ) == 1875353228 )
stopifnot( round( coef( hispanic_employment_result )[ 'hispanic' ] , 0 ) == 2026406 )
stopifnot( round( coef( hispanic_employment_result )[ 'equally hisp/non' ] , 0 ) == 400152 )
stopifnot( round( coef( hispanic_employment_result )[ 'non-hispanic' ] , 0 ) == 56889606 )
Relative Standard Errors of Estimates at the U.S. Level using the PUMS Tables for:
stopifnot( round( cv( hispanic_receipts_result )[ 'hispanic' ] , 2 ) == 0.02 )
stopifnot( round( cv( hispanic_receipts_result )[ 'equally hisp/non' ] , 2 ) == 0.06 )
stopifnot( round( cv( hispanic_receipts_result )[ 'non-hispanic' ] , 2 ) == 0 )
stopifnot( round( cv( hispanic_payroll_result )[ 'hispanic' ] , 2 ) == 0.01 )
stopifnot( round( cv( hispanic_payroll_result )[ 'equally hisp/non' ] , 2 ) == 0.06 )
stopifnot( round( cv( hispanic_payroll_result )[ 'non-hispanic' ] , 2 ) == 0 )
stopifnot( round( cv( hispanic_employment_result )[ 'hispanic' ] , 2 ) == 0.01 )
stopifnot( round( cv( hispanic_employment_result )[ 'equally hisp/non' ] , 2 ) == 0.05 )
stopifnot( round( cv( hispanic_employment_result )[ 'non-hispanic' ] , 2 ) == 0 )