California Health Interview Survey (CHIS)
California’s National Health Interview Survey (NHIS), a healthcare survey for the nation’s largest state.
One adult, one teenage (12-17), and one child table, each with one row per sampled respondent.
A complex survey designed to generalize to the civilian non-institutionalized population of California.
Released annually since 2011, and biennially since 2001.
Administered by the UCLA Center for Health Policy Research.
Recommended Reading
Four Example Strengths & Limitations:
✔️ Neighborhood-level estimates
✔️ Oversamples allow targeted research questions
❌ Low response rates compared to nationwide surveys
❌ Two-year data periods reduces precision of trend analyses
Three Example Findings:
The share of non-citizen kids reporting excellent health increased from 2013-2015 to 2017-2019.
Adults working from home had worse health behaviors and mental health than other workers in 2021.
Two Methodology Documents:
CHIS 2021-2022 Methodology Report Series, Report 1: Sample Design DESIGN
CHIS 2021-2022 Methodology Report Series, Report 5: Weighting and Variance Estimation
One Haiku:
# strike gold, movie star
# play, third wish cali genie
# statewide health survey
Function Definitions
Define a function to unzip and import each Stata file:
library(haven)
<-
chis_import function( this_fn ){
<- unzip( this_fn , exdir = tempdir() )
these_files
<- grep( "ADULT\\.|CHILD\\.|TEEN\\." , these_files , value = TRUE )
stata_fn
<- read_stata( stata_fn )
this_tbl
<- data.frame( this_tbl )
this_df
names( this_df ) <- tolower( names( this_df ) )
# remove labelled classes
<-
labelled_cols sapply( this_df , function( w ) class( w )[1] == 'haven_labelled' )
<-
this_df[ labelled_cols ] sapply( this_df[ labelled_cols ] , as.numeric )
this_df }
Download, Import, Preparation
Register at the UCLA Center for Health Policy Research at https://healthpolicy.ucla.edu/user/register.
Choose Year:
2022
, Age Group:Adult
andTeen
andChild
, File Type:Stata
.Download the 2022 Adult, Teen, and Child Stata files (version
Oct 2023
).
Import the adult, teen, and child stata tables into data.frame
objects:
<-
chis_adult_df chis_import( file.path( path.expand( "~" ) , "adult_stata_2022.zip" ) )
<-
chis_teen_df chis_import( file.path( path.expand( "~" ) , "teen_stata_2022.zip" ) )
<-
chis_child_df chis_import( file.path( path.expand( "~" ) , "child_stata_2022.zip" ) )
Harmonize the general health condition variable across the three data.frame
objects:
'general_health' ] <-
chis_adult_df[ , c( 1 , 2 , 3 , 4 , 4 )[ chis_adult_df[ , 'ab1' ] ]
'general_health' ] <- chis_teen_df[ , 'tb1_p1' ]
chis_teen_df[ ,
'general_health' ] <-
chis_child_df[ , c( 1 , 2 , 3 , 4 , 4 )[ chis_child_df[ , 'ca6' ] ]
Add four age categories across the three data.frame
objects:
'age_categories' ] <-
chis_adult_df[ , ifelse( chis_adult_df[ , 'srage_p1' ] >= 65 , 4 , 3 )
'age_categories' ] <- 2
chis_teen_df[ ,
'age_categories' ] <- 1 chis_child_df[ ,
Harmonize the usual source of care variable across the three data.frame
objects:
'no_usual_source_of_care' ] <-
chis_adult_df[ , as.numeric( chis_adult_df[ , 'ah1v2' ] == 2 )
'no_usual_source_of_care' ] <-
chis_teen_df[ , as.numeric( chis_teen_df[ , 'tf1v2' ] == 2 )
'no_usual_source_of_care' ] <-
chis_child_df[ , as.numeric( chis_child_df[ , 'cd1v2' ] == 2 )
Add monthly fruit and vegetable counts to the adult data.frame
object, blanking the other two:
'adult_fruits_past_month' ] <- chis_adult_df[ , 'ae2' ]
chis_adult_df[ ,
'adult_veggies_past_month' ] <- chis_adult_df[ , 'ae7' ]
chis_adult_df[ ,
c( 'adult_fruits_past_month' , 'adult_veggies_past_month' ) ] <- NA
chis_teen_df[ ,
c( 'adult_fruits_past_month' , 'adult_veggies_past_month' ) ] <- NA chis_child_df[ ,
Specify which variables to keep in each of the data.frame
objects, then stack them:
<-
variables_to_keep c(
grep( '^rakedw' , names( chis_adult_df ) , value = TRUE ) ,
'general_health' , 'age_categories' , 'adult_fruits_past_month' ,
'adult_veggies_past_month' , 'srsex' , 'povll2_p1v2' , 'no_usual_source_of_care'
)
<-
chis_df rbind(
chis_child_df[ variables_to_keep ] ,
chis_teen_df[ variables_to_keep ] ,
chis_adult_df[ variables_to_keep ] )
Save Locally
Save the object at any point:
# chis_fn <- file.path( path.expand( "~" ) , "CHIS" , "this_file.rds" )
# saveRDS( chis_df , file = chis_fn , compress = FALSE )
Load the same object:
# chis_df <- readRDS( chis_fn )
Survey Design Definition
Construct a complex sample survey design:
library(survey)
<-
chis_design svrepdesign(
data = chis_df ,
weights = ~ rakedw0 ,
repweights = "rakedw[1-9]" ,
type = "other" ,
scale = 1 ,
rscales = 1 ,
mse = TRUE
)
Variable Recoding
Add new columns to the data set:
<-
chis_design update(
chis_design ,
one = 1 ,
gender = factor( srsex , levels = 1:2 , labels = c( 'male' , 'female' ) ) ,
age_categories =
factor(
age_categories , levels = 1:4 ,
labels =
c( 'children under 12' , 'teens age 12-17' , 'adults age 18-64' , 'seniors' )
) ,
general_health =
factor(
general_health ,levels = 1:4 ,
labels = c( 'Excellent' , 'Very good' , 'Good' , 'Fair/Poor' )
) )
Analysis Examples with the survey
library
Unweighted Counts
Count the unweighted number of records in the survey sample, overall and by groups:
sum( weights( chis_design , "sampling" ) != 0 )
svyby( ~ one , ~ general_health , chis_design , unwtd.count )
Weighted Counts
Count the weighted size of the generalizable population, overall and by groups:
svytotal( ~ one , chis_design )
svyby( ~ one , ~ general_health , chis_design , svytotal )
Descriptive Statistics
Calculate the mean (average) of a linear variable, overall and by groups:
svymean( ~ povll2_p1v2 , chis_design )
svyby( ~ povll2_p1v2 , ~ general_health , chis_design , svymean )
Calculate the distribution of a categorical variable, overall and by groups:
svymean( ~ gender , chis_design )
svyby( ~ gender , ~ general_health , chis_design , svymean )
Calculate the sum of a linear variable, overall and by groups:
svytotal( ~ povll2_p1v2 , chis_design )
svyby( ~ povll2_p1v2 , ~ general_health , chis_design , svytotal )
Calculate the weighted sum of a categorical variable, overall and by groups:
svytotal( ~ gender , chis_design )
svyby( ~ gender , ~ general_health , chis_design , svytotal )
Calculate the median (50th percentile) of a linear variable, overall and by groups:
svyquantile( ~ povll2_p1v2 , chis_design , 0.5 )
svyby(
~ povll2_p1v2 ,
~ general_health ,
chis_design ,
svyquantile , 0.5 ,
ci = TRUE
)
Estimate a ratio:
svyratio(
numerator = ~ adult_fruits_past_month ,
denominator = ~ adult_veggies_past_month ,
chis_design ,na.rm = TRUE
)
Subsetting
Restrict the survey design to seniors:
<- subset( chis_design , age_categories == 'seniors' ) sub_chis_design
Calculate the mean (average) of this subset:
svymean( ~ povll2_p1v2 , sub_chis_design )
Measures of Uncertainty
Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:
<- svymean( ~ povll2_p1v2 , chis_design )
this_result
coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )
<-
grouped_result svyby(
~ povll2_p1v2 ,
~ general_health ,
chis_design ,
svymean
)
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )
Calculate the degrees of freedom of any survey design object:
degf( chis_design )
Calculate the complex sample survey-adjusted variance of any statistic:
svyvar( ~ povll2_p1v2 , chis_design )
Include the complex sample design effect in the result for a specific statistic:
# SRS without replacement
svymean( ~ povll2_p1v2 , chis_design , deff = TRUE )
# SRS with replacement
svymean( ~ povll2_p1v2 , chis_design , deff = "replace" )
Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See ?svyciprop
for alternatives:
svyciprop( ~ no_usual_source_of_care , chis_design ,
method = "likelihood" )
Regression Models and Tests of Association
Perform a design-based t-test:
svyttest( povll2_p1v2 ~ no_usual_source_of_care , chis_design )
Perform a chi-squared test of association for survey data:
svychisq(
~ no_usual_source_of_care + gender ,
chis_design )
Perform a survey-weighted generalized linear model:
<-
glm_result svyglm(
~ no_usual_source_of_care + gender ,
povll2_p1v2
chis_design
)
summary( glm_result )
Replication Example
This matches the proportions and counts from AskCHIS. The standard errors do not match precisely, but the team at UCLA confirmed this survey design definition to be correct, and that the minor standard error and confidence interval differences should not impact any analyses from a statistical perspective:
<-
chis_adult_design svrepdesign(
data = chis_adult_df ,
weights = ~ rakedw0 ,
repweights = "rakedw[1-9]" ,
type = "other" ,
scale = 1 ,
rscales = 1 ,
mse = TRUE
)
<-
chis_adult_design update(
chis_adult_design ,ab1 =
factor(
ab1 , levels = 1:5 ,
labels = c( 'Excellent' , 'Very good' , 'Good' , 'Fair' , 'Poor' )
)
)
<- svymean( ~ ab1 , chis_adult_design )
this_proportion
stopifnot( round( coef( this_proportion ) , 3 ) == c( 0.183 , 0.340 , 0.309 , 0.139 , 0.029 ) )
<- svytotal( ~ ab1 , chis_adult_design )
this_count
stopifnot(
round( coef( this_count ) , -3 ) == c( 5414000 , 10047000 , 9138000 , 4106000 , 855000 )
)
Analysis Examples with srvyr
The R srvyr
library calculates summary statistics from survey data, such as the mean, total or quantile using dplyr-like syntax. srvyr allows for the use of many verbs, such as summarize
, group_by
, and mutate
, the convenience of pipe-able functions, the tidyverse
style of non-standard evaluation and more consistent return types than the survey
package. This vignette details the available features. As a starting point for CHIS users, this code replicates previously-presented examples:
library(srvyr)
<- as_survey( chis_design ) chis_srvyr_design
Calculate the mean (average) of a linear variable, overall and by groups:
%>%
chis_srvyr_design summarize( mean = survey_mean( povll2_p1v2 ) )
%>%
chis_srvyr_design group_by( general_health ) %>%
summarize( mean = survey_mean( povll2_p1v2 ) )