National Crime Victimization Survey (NCVS)

License: GPL v3 Local Testing Badge

The primary information source on victims of nonfatal personal crimes and household property crimes (especially those not reported to the police), and also victim experience within the justice system.

  • Three tables, the first one row per household per interview, the second one per person-interview, the third one per incident reported across each sampled household’s seven-interview, three-year period.

  • A complex survey designed to generalize to civilian, non-institutional americans aged 12 and older.

  • Released annually since its 1992 rename and redesign, related surveys dating to the early 1970s.

  • Sponsored by the Bureau of Justics Statistics and administered by the US Census Bureau.


Function Definitions

Define a function to extract values stored in parentheses:

ncvs_numeric_to_factor <- 
    function( this_column ) as.numeric( gsub( "^\\(([0-9]+)\\) (.*)" , "\\1" , this_column ) )

Define a function to merge aggregated information onto main data.frame objects:

left_join_zero_missings <-
    function( left_df , right_df ){

        final_df <-
            merge(
                left_df ,
                right_df ,
                all.x = TRUE
            )
            
        stopifnot( nrow( final_df ) == nrow( left_df ) )

        for( this_column in setdiff( names( right_df ) , names( left_df ) ) ){
            final_df[ is.na( final_df[ , this_column ] ) , this_column ] <- 0
        }
        
        gc()

        final_df
    }

Download, Import, Preparation

  1. Register for the National Archive of Criminal Justice Data at https://www.icpsr.umich.edu/web/NACJD/series/95

  2. Choose National Crime Victimization Survey, Concatenated File, [United States], 1992-2022 (ICPSR 38604)

  3. Download the R version of the September 18, 2023 file.

Import the three main files:

ncvs_household_df_name <-
    load( file.path( path.expand( "~" ) , "ICPSR_38604/DS0001/38604-0001-Data.rda" ) )
    
ncvs_person_df_name <-
    load( file.path( path.expand( "~" ) , "ICPSR_38604/DS0002/38604-0002-Data.rda" ) )

ncvs_incident_df_name <-
    load( file.path( path.expand( "~" ) , "ICPSR_38604/DS0003/38604-0003-Data.rda" ) )

ncvs_household_df <- get( ncvs_household_df_name )
ncvs_person_df <- get( ncvs_person_df_name )
ncvs_incident_df <- get( ncvs_incident_df_name )

rm( list = ncvs_household_df_name ) ; gc()
rm( list = ncvs_person_df_name ) ; gc()
rm( list = ncvs_incident_df_name ) ; gc()

names( ncvs_household_df ) <- tolower( names( ncvs_household_df ) )
names( ncvs_person_df ) <- tolower( names( ncvs_person_df ) )
names( ncvs_incident_df ) <- tolower( names( ncvs_incident_df ) )

Determine which variables from each table to retain:

household_variables_to_keep <-
    c( 'year' , 'yearq' , 'idhh' , 'wgthhcy' , 'v2002' , 'sc214a' , 
    'v2026' , 'v2126a' , 'v2126b' , 'v2015' , 'v2017' , 'v2117' , 
    'v2118' , 'v2125' , 'v2071' , 'v2072' , 'v2127b' , 'v2129' )

person_variables_to_keep <-
    c( 'year' , 'yearq' , 'v3018' , 'v3014' , 'sc214a' , 'v3023' , 
    'v3023a' , 'v3024' , 'v3024a' , 'v2117' , 'v2118' , 'v3002' , 
    'idhh' , 'idper' , 'wgtpercy' , 'v3015' , 'v3033' , 'v2026' )

incident_variables_to_keep <-
    c( 'year' , 'yearq' , 'v2117' , 'v2118' , 'v4022' , 
    paste0( 'v401' , 6:9 ) , 'v4399' , 'v4529' , 'v4049' , paste0( 'v405' , 0:8 ) , 
    'v4060' , 'v4062' , paste0( 'v41' , 11:22 ) , 'v4064' , paste0( 'v41' , 27:37 ) , 
    'v4467' , 'v4234' , 'v4245' , 'v4243' , 'v4241' , 'v4256' , 'v4258' , 'v4278' , 
    'v4262' , paste0( 'v42' , 59:61 ) , 'v4269' , 'v4270' , 'v4268' , 'v4267' , 
    'v4271' , 'v4266' , 'v4265' , 'wgtviccy' , 'idhh' , 'idper' , 'v4002' , 'v4288' , 
    'v4290' , 'v4400' , 'v4437' , 'v4422' , 'v4024' )

Limit columns in each data.frame to those specified above:

ncvs_household_df <- ncvs_household_df[ , household_variables_to_keep ]

ncvs_person_df <- ncvs_person_df[ , person_variables_to_keep ]

ncvs_incident_df <- ncvs_incident_df[ , incident_variables_to_keep ]

gc()

In this example, limit the 1993-2022 data.frame to only the first & last years for quicker processing:

ncvs_household_df <- ncvs_household_df[ ncvs_household_df[ , 'year' ] %in% c( 1994 , 2022 ) , ]

ncvs_person_df <- ncvs_person_df[ ncvs_person_df[ , 'year' ] %in% c( 1994 , 2022 ) , ]

ncvs_incident_df <- ncvs_incident_df[ ncvs_incident_df[ , 'year' ] %in% c( 1994 , 2022 ) , ]

gc()

Recode identifiers to character class:

ncvs_household_df[ , 'idhh' ] <- as.character( ncvs_household_df[ , 'idhh' ] )

ncvs_person_df[ c( 'idhh' , 'idper' ) ] <-
    sapply( ncvs_person_df[ c( 'idhh' , 'idper' ) ] , as.character )

ncvs_incident_df[ c( 'idhh' , 'idper' ) ] <-
    sapply( ncvs_incident_df[ c( 'idhh' , 'idper' ) ] , as.character )

Recode factor variables to numeric values:

ncvs_household_df[ sapply( ncvs_household_df , class ) == 'factor' ] <-
    sapply( 
        ncvs_household_df[ sapply( ncvs_household_df , class ) == 'factor' ] , 
        ncvs_numeric_to_factor , 
        simplify = FALSE 
    )

ncvs_person_df[ sapply( ncvs_person_df , class ) == 'factor' ] <-
    sapply( 
        ncvs_person_df[ sapply( ncvs_person_df , class ) == 'factor' ] , 
        ncvs_numeric_to_factor ,
        simplify = FALSE
    )

ncvs_incident_df[ sapply( ncvs_incident_df , class ) == 'factor' ] <-
    sapply( 
        ncvs_incident_df[ sapply( ncvs_incident_df , class ) == 'factor' ] , 
        ncvs_numeric_to_factor ,
        simplify = FALSE
    )

Add a column of ones to each data.frame:

ncvs_household_df[ , 'one' ] <- 1
    
ncvs_person_df[ , 'one' ] <- 1

ncvs_incident_df[ , 'one' ] <- 1

Add a year group variable to each data.frame:

ncvs_household_df[ , 'yr_grp' ] <-
    findInterval( ncvs_household_df[ , 'year' ] , c( 1992 , 1997 , 2006 , 2016 ) )
    
ncvs_person_df[ , 'yr_grp' ] <-
    findInterval( ncvs_person_df[ , 'year' ] , c( 1992 , 1997 , 2006 , 2016 ) )

ncvs_incident_df[ , 'yr_grp' ] <-
    findInterval( ncvs_incident_df[ , 'year' ] , c( 1992 , 1997 , 2006 , 2016 ) )

Add a flag indicating whether each incident occurred inside the country:

ncvs_incident_df[ , 'exclude_outus' ] <-
    ncvs_incident_df[ , 'v4022' ] %in% 1

Add a half-year indicator to the incident data.frame:

ncvs_incident_df <-
    transform(
        ncvs_incident_df ,
        half_year =
            ifelse( substr( yearq , 6 , 6 ) %in% c( '1' , '2' ) , 1 ,
            ifelse( substr( yearq , 6 , 6 ) %in% c( '3' , '4' ) , 2 ,
                NA ) )
    )
    
stopifnot( all( ncvs_incident_df[ , 'half_year' ] %in% 1:2 ) )

Define violent crimes on the incident data.frame:

# rape and sexual assault
ncvs_incident_df[ , 'rsa' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% c( 1:4 , 15 , 16 , 18 , 19 )

# robbery
ncvs_incident_df[ , 'rob' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% 5:10

# assault
ncvs_incident_df[ , 'ast' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% c( 11:14 , 17 , 20 )
    
# simple assault
ncvs_incident_df[ , 'sast' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% c( 14 , 17 , 20 )

# aggravated assault
ncvs_incident_df[ , 'aast' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% 11:13

# violent crime
ncvs_incident_df[ , 'violent' ] <-
    apply( ncvs_incident_df[ c( 'rsa' , 'rob' , 'ast' ) ] , 1 , any )

# violent crime excluding simple assault
ncvs_incident_df[ , 'sviolent' ] <-
    apply( ncvs_incident_df[ , c( 'rsa' , 'rob' , 'aast' ) ] , 1 , any )

Define personal theft and then person-crime on the incident data.frame:

ncvs_incident_df[ , 'ptft' ] <- 
    ncvs_incident_df[ , 'v4529' ] %in% 21:23

ncvs_incident_df[ , 'personcrime' ] <-
    apply( ncvs_incident_df[ , c( 'violent' , 'ptft' ) ] , 1 , any )

Define property crimes on the incident data.frame:

ncvs_incident_df[ , 'hhburg' ] <-
    ncvs_incident_df[ , 'v4529' ] %in% 31:33

# completed theft with something taken
ncvs_incident_df[ , 'burg_ct' ] <-
        ( ncvs_incident_df[ , 'v4529' ] %in% 31:33 ) &
        ( ncvs_incident_df[ , 'v4288' ] %in% 1 )

# attempted theft
ncvs_incident_df[ , 'burg_at' ] <-
        ( ncvs_incident_df[ , 'v4529' ] %in% 31:33 ) &
        ( ncvs_incident_df[ , 'v4290' ] %in% 1 )

ncvs_incident_df[ , 'burg_ncat' ] <-
        ( ncvs_incident_df[ , 'v4529' ] %in% 31:33 ) &
        ( ncvs_incident_df[ , 'v4288' ] %in% 2 ) &
        ( ncvs_incident_df[ , 'v4290' ] %in% 2 )

ncvs_incident_df[ , 'burgcats2' ] <- 0
ncvs_incident_df[ ncvs_incident_df[ , 'burg_ncat' ] , 'burgcats2' ] <- 2
ncvs_incident_df[ ncvs_incident_df[ , 'burg_ct' ] | ncvs_incident_df[ , 'burg_at' ] , 'burgcats2' ] <- 1
    

ncvs_incident_df[ , 'burg' ] <- 
    ncvs_incident_df[ , 'burgcats2' ] %in% 1

# trespassing
ncvs_incident_df[ , 'tres' ] <- 
    ncvs_incident_df[ , 'burgcats2' ] %in% 2

# motor vehicle theft
ncvs_incident_df[ , 'mvtft' ] <-
    ncvs_incident_df[ , 'v4529' ] %in% 40:41

# household theft
ncvs_incident_df[ , 'hhtft' ] <-
    ncvs_incident_df[ , 'v4529' ] %in% 54:59

# property crime
ncvs_incident_df[ , 'property' ] <-
    apply( ncvs_incident_df[ c( 'hhburg' , 'mvtft' , 'hhtft' ) ] , 1 , any )

Define a series weight on the incident data.frame:

ncvs_incident_df[ , 'series' ] <- 2

ncvs_incident_df[ 

    ncvs_incident_df[ , 'v4017' ] %in% c( 1 , 8 ) |
    ncvs_incident_df[ , 'v4018' ] %in% c( 2 , 8 ) |
    ncvs_incident_df[ , 'v4019' ] %in% c( 1 , 8 )

    , 'series' ] <- 1
     
ncvs_incident_df[ , 'serieswgt' ] <- 1

ncvs_incident_df[ !( ncvs_incident_df[ , 'v4016' ] %in% 997:998 ) , 'n10v4016' ] <-
    pmin( ncvs_incident_df[ !( ncvs_incident_df[ , 'v4016' ] %in% 997:998 ) , 'v4016' ] , 10 )
     
ncvs_incident_df[ ncvs_incident_df[ , 'series' ] == 2 , 'serieswgt' ] <-
    ncvs_incident_df[ ncvs_incident_df[ , 'series' ] == 2 , 'n10v4016' ]

ncvs_incident_df[ ncvs_incident_df[ , 'series' ] == 2 & is.na( ncvs_incident_df[ , 'n10v4016' ] ) , 'serieswgt' ] <- 6

Aggregate property-crimes to the household-interview level:

summed_hh_crimes <-
    aggregate(
        cbind(
            property * serieswgt ,
            hhburg * serieswgt ,
            mvtft * serieswgt ,
            burg * serieswgt ,
            tres * serieswgt
        ) ~ yearq + idhh + v4002 + wgtviccy ,
        
        data = subset( ncvs_incident_df , !exclude_outus & property ) ,
        
        sum
    )

names( summed_hh_crimes ) <-
    c( 'yearq' , 'idhh' , 'v2002' , 'wgtviccy' , 'property' , 'hhburg' , 
    'mvtft' , 'burg' , 'tres' )

Merge aggregated property-crimes on to the household-interview data.frame:

ncvs_household_df <- left_join_zero_missings( ncvs_household_df , summed_hh_crimes )

rm( summed_hh_crimes ) ; gc()

Aggregate person-crimes to the person-interview level:

summed_person_crimes <-
    aggregate(
        cbind(
            violent * serieswgt ,
            sviolent * serieswgt ,
            rsa * serieswgt ,
            rob * serieswgt ,
            aast * serieswgt ,
            sast * serieswgt ,
            ptft * serieswgt
        ) ~ yearq + idhh + v4002 + idper + wgtviccy ,
        
        data = subset( ncvs_incident_df , !exclude_outus & personcrime ) ,
        
        sum
    )
    

names( summed_person_crimes ) <-
    c( 'yearq' , 'idhh' , 'v3002' , 'idper' , 'wgtviccy' , 'violent' , 
    'sviolent' , 'rsa' , 'rob' , 'aast' , 'sast' , 'ptft' )

Merge aggregated property-crimes on to the person-interview data.frame:

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , summed_person_crimes )

rm( summed_person_crimes ) ; gc()

Starting here, the weight calculation prepares an adjustment for all violence combined with the variables violent and violent_year. To calculate the prevalence rate of a subset of person-crimes, starting at this point, replace these two values with variables like rob and rob_year.

Aggregate violent crimes to the person-year level:

summed_person_year_violent_crimes <-
    aggregate(
        violent * serieswgt ~ idhh + idper + year ,
        data = subset( ncvs_incident_df , !exclude_outus & violent ) ,
        sum
    )

names( summed_person_year_violent_crimes )[ ncol( summed_person_year_violent_crimes ) ] <- 
    'violent_year'

Merge aggregated person-year violent crime series weights on to the person-interview data.frame:

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , summed_person_year_violent_crimes )

rm( summed_person_year_violent_crimes ) ; gc()

Aggregate violent crimes to the person-half-year level, then reshape into a wide data.frame:

summed_person_half_year_violent_crimes <-
    aggregate(
        wgtviccy ~ idhh + idper + year + half_year ,
        data = subset( ncvs_incident_df , !exclude_outus & violent ) ,
        mean
    )

first_half_violent_crimes <-
    subset( summed_person_half_year_violent_crimes , half_year == 1 )
    
second_half_violent_crimes <-
    subset( summed_person_half_year_violent_crimes , half_year == 2 )

first_half_violent_crimes[ , 'half_year' ] <-
    second_half_violent_crimes[ , 'half_year' ] <- NULL
    
names( first_half_violent_crimes )[ ncol( first_half_violent_crimes ) ] <- 'vwgt1'
names( second_half_violent_crimes )[ ncol( second_half_violent_crimes ) ] <- 'vwgt2'

wide_person_half_year_violent_crimes <-
    merge(
        first_half_violent_crimes ,
        second_half_violent_crimes ,
        all = TRUE
    )

Merge both violent crime weights on to the person-interview data.frame:

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , wide_person_half_year_violent_crimes )

rm( wide_person_half_year_violent_crimes ) ; gc()

Find the maximum incident victim weight among three half-year periods:

max_half_v_crimes <-
    aggregate(
        wgtviccy ~ idhh + idper + year + half_year + v4002 ,
        data = subset( ncvs_incident_df , !exclude_outus & violent ) ,
        max
    )

max_half_v_crimes <-
    max_half_v_crimes[ 
        do.call( 
            order , 
            max_half_v_crimes[ c( 'idhh' , 'idper' , 'year' , 'half_year' ) ] ) , 
    ]

max_half_v_crimes[ , 'byvar' ] <-
    apply( 
        max_half_v_crimes[ c( 'idhh' , 'idper' , 'year' , 'half_year' ) ] , 
        1 , 
        paste , 
        collapse = ' ' 
    )
    
max_half_v_crimes[ 1 , 'id' ] <- 1

for( i in seq( 2 , nrow( max_half_v_crimes ) ) ){

    if( max_half_v_crimes[ i , 'byvar' ] == max_half_v_crimes[ i - 1 , 'byvar' ] ){
    
        max_half_v_crimes[ i , 'id' ] <- max_half_v_crimes[ i - 1 , 'id' ] + 1
        
    } else {
    
        max_half_v_crimes[ i , 'id' ] <- 1
        
    }
}

max_half_v_crimes[ , 'label' ] <- 
    paste0( 
        '_' , 
        max_half_v_crimes[ , 'half_year' ] , 
        '_' , 
        max_half_v_crimes[ , 'id' ] 
    )

max_half_v_crimes[ , 'byvar' ] <- NULL

stopifnot( all( max_half_v_crimes[ , 'label' ] %in% c( '_1_1' , '_2_1' , '_1_2' ) ) )

h_1_1_df <-
    max_half_v_crimes[ 
        max_half_v_crimes[ , 'label' ] == '_1_1' , 
        c( 'idhh' , 'idper' , 'year' , 'wgtviccy' )
    ]
    
names( h_1_1_df )[ ncol( h_1_1_df ) ] <- 'wgtviccy_1_1'
    
h_2_1_df <-
    max_half_v_crimes[ 
        max_half_v_crimes[ , 'label' ] == '_2_1' , 
        c( 'idhh' , 'idper' , 'year' , 'wgtviccy' )
    ]
    
names( h_2_1_df )[ ncol( h_2_1_df ) ] <- 'wgtviccy_2_1'
    
h_1_2_df <-
    max_half_v_crimes[ 
        max_half_v_crimes[ , 'label' ] == '_1_2' , 
        c( 'idhh' , 'idper' , 'year' , 'wgtviccy' )
    ]
    
names( h_1_2_df )[ ncol( h_1_2_df ) ] <- 'wgtviccy_1_2'

three_half_df <-
    Reduce( function( ... ) merge( ... , all = TRUE ) , list( h_1_1_df , h_2_1_df , h_1_2_df ) )
    
rm( h_1_1_df , h_2_1_df , h_1_2_df ) ; gc()

Merge these three half-year period weights on to the person-interview data.frame:

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , three_half_df )

rm( three_half_df ) ; gc()

Aggregate interview counts to the person-year level:

summed_person_year_interviews <-
    aggregate(
        one ~ idhh + idper + year ,
        data = subset( ncvs_person_df , wgtpercy > 0 ) ,
        sum
    )

names( summed_person_year_interviews )[ ncol( summed_person_year_interviews ) ] <- 
    'interview_count'

Merge interview_count on to the person-interview data.frame:

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , summed_person_year_interviews )

rm( summed_person_year_interviews ) ; gc()

Apply Interview/Incident Groups:

ncvs_person_df <-
    transform(
        ncvs_person_df ,
        interview_incident_groups =
        
            ifelse( violent_year == 0 , 
                1 ,
        
            ifelse( 
                interview_count == 1 & 
                ( ( as.numeric( vwgt1 > 0 ) + as.numeric( vwgt2 > 0 ) ) == 1 ) & 
                wgtviccy > 0 , 
                2 ,
            
            ifelse( 
                interview_count == 2 & 
                ( ( as.numeric( vwgt1 > 0 ) + as.numeric( vwgt2 > 0 ) ) == 1 ) , 
                3 ,
            
            ifelse( 
                interview_count == 2 & 
                ( vwgt1 > 0 ) & ( vwgt2 > 0 ) & ( wgtviccy > 0 ) , 
                4 ,
            
            ifelse( 
                interview_count == 3 & 
                ( ( 
                    as.numeric( wgtviccy_1_1 > 0 ) + 
                    as.numeric( wgtviccy_2_1 > 0 ) + 
                    as.numeric( wgtviccy_1_2 > 0 ) 
                ) == 1 ) , 
                5 ,
            
            ifelse( 
                interview_count == 3 & 
                ( wgtviccy_1_1 > 0 ) & ( wgtviccy_2_1 > 0 ) & ( wgtviccy_1_2 > 0 ) , 
                6 ,
            
            ifelse( 
                interview_count == 3 & 
                ( wgtviccy_1_1 > 0 ) & ( wgtviccy_2_1 > 0 ) & 
                substr( yearq , 6 , 6 ) %in% 1:2 , 
                7 ,
                
            ifelse( 
                interview_count == 3 & 
                ( wgtviccy_1_1 > 0 ) & ( wgtviccy_2_1 > 0 ) & 
                substr( yearq , 6 , 6 ) %in% 3:4 , 
                8 , 
                
                9 
            ) ) ) ) ) ) ) )
    )
            

# confirm all records in group 9 have both a wgtviccy == 0 & wgtpercy == 0
stopifnot( nrow( subset( ncvs_person_df , interview_incident_groups == 9 & wgtviccy > 0 ) ) == 0 )
stopifnot( nrow( subset( ncvs_person_df , interview_incident_groups == 9 & wgtpercy > 0 ) ) == 0 )

ncvs_person_df <-
    transform(
        ncvs_person_df ,
        
        prev_wgt0 =
            ifelse( interview_incident_groups == 1 , wgtpercy ,
            ifelse( interview_incident_groups == 2 , wgtviccy / 2 ,
            ifelse( interview_incident_groups == 3 , pmax( vwgt1 , vwgt2 , na.rm = TRUE ) / 2 ,
            ifelse( interview_incident_groups == 4 , wgtviccy / 2 ,
            ifelse( interview_incident_groups == 5 , 
                pmax( wgtviccy_1_1 , wgtviccy_1_2 , wgtviccy_2_1 , na.rm = TRUE ) / 2 ,
            ifelse( interview_incident_groups == 6 , wgtviccy / 2 ,
            ifelse( interview_incident_groups == 7 , wgtviccy_1_1 / 2 ,
            ifelse( interview_incident_groups == 8 , wgtviccy_2_1 / 2 ,
            ifelse( interview_incident_groups == 9 , 0 ,
                NA ) ) ) ) ) ) ) ) )
    )

# matches table 8
# https://www.ojp.gov/pdffiles1/bjs/grants/308745.pdf#page=44

Aggregate wgtviccy and prev_wgt0 sums to the year level, then merge:

summed_year_weights <-
    aggregate(
        cbind( wgtviccy , prev_wgt0 ) ~ year ,
        data = subset( ncvs_person_df , violent_year == 1 ) ,
        sum
    )

names( summed_year_weights ) <- c( 'year' , 'vwgt_1v' , 'prev_1v' )

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , summed_year_weights )

rm( summed_year_weights ) ; gc()

Calibrate so that the weight sums to wgtviccy for persons with exactly one victimization:

ncvs_person_df <-
    transform(
        ncvs_person_df ,

        prev_wgt1 = 
            ifelse( violent_year == 0 , prev_wgt0 ,
            ifelse( violent_year > 0 & wgtpercy > 0 , 
                prev_wgt0 * ( vwgt_1v / prev_1v ) , 0 ) )
    )

Aggregate wgtviccy and prev_wgt0 sums to the year level, then merge:

summed_year_crimes <-
    aggregate(
        cbind( 
            wgtpercy , 
            ifelse( violent_year > 0 , prev_wgt1 , 0 ) , 
            ifelse( violent_year == 0 , prev_wgt1 , 0 )
        ) ~ year ,
        data = ncvs_person_df ,
        sum
    )

names( summed_year_crimes ) <- c( 'year' , 'total_persons' , 'prev_with_crime' , 'prev_no_crime' )

ncvs_person_df <- left_join_zero_missings( ncvs_person_df , summed_year_crimes )

rm( summed_year_crimes ) ; gc()

Calibrate so that the weight sums to wgtpercy for all persons:

ncvs_person_df <-
    transform(
        ncvs_person_df ,

        prev_wgt =
            ifelse( 
                violent_year == 0 ,
                prev_wgt1 * ( ( total_persons - prev_with_crime ) / prev_no_crime ) ,
                prev_wgt1 
            )
    )

Save Locally  

Save the object at any point:

# ncvs_fn <- file.path( path.expand( "~" ) , "NCVS" , "this_file.rds" )
# saveRDS( ncvs_df , file = ncvs_fn , compress = FALSE )

Load the same object:

# ncvs_df <- readRDS( ncvs_fn )

Survey Design Definition

Construct a complex sample survey design:

library(survey)
    
options('survey.lonely.psu' = 'adjust')

# replace missing clusters
ncvs_person_df[ is.na( ncvs_person_df[ , 'v2118' ] ) , 'v2118' ] <- -1
ncvs_person_df[ is.na( ncvs_person_df[ , 'v2117' ] ) , 'v2117' ] <- -1

# subset this dataset to only 2022
ncvs_df <- subset( ncvs_person_df , year == max( year ) )

ncvs_design <-
    svydesign( 
        ~ v2118 ,
        strata = ~ interaction( yr_grp , v2117 ) ,
        data = ncvs_df ,
        weights = ~ prev_wgt ,
        nest = TRUE
    )

Variable Recoding

Add new columns to the data set:

ncvs_design <- 
    update( 
        ncvs_design , 

        one = 1 ,

        victim = as.numeric( violent_year > 0 ) ,

        sex = factor( v3018 , levels = 1:2 , labels = c( 'male' , 'female' ) ) ,
            
        linear_age = ifelse( v3014 == 99 , NA , v3014 ) ,
        
        times_moved_in_prior_five_years =
            ifelse( v3033 == 99 , NA , v3033 ) ,
        
        current_marital_status =
            factor( 
                v3015 , 
                levels = c( 1:5 , 8 ) , 
                labels = 
                    c( 'married' , 'widowed' , 'divorced' , 'separated' , 'single' , 'residue' )
            ) ,
        
        household_income_starting_2015q1 =
            factor(
                findInterval( sc214a , c( 1 , 9 , 13 , 16 , 18 ) ) ,
                levels = 1:5 ,
                labels = 
                    c( 'less than $25,000' , '$25,000 - $49,999' , '$50,000 - $99,999' , 
                    '$100,000 - $199,999' , '$200,000 or more' )
            ) ,
        
        household_income_75k = 
            ifelse( v2026 == 98 , NA , as.numeric( v2026 %in% 14:18 ) )
    )

Analysis Examples with the survey library  

Unweighted Counts

Count the unweighted number of records in the survey sample, overall and by groups:

sum( weights( ncvs_design , "sampling" ) != 0 )

svyby( ~ one , ~ sex , ncvs_design , unwtd.count )

Weighted Counts

Count the weighted size of the generalizable population, overall and by groups:

svytotal( ~ one , ncvs_design )

svyby( ~ one , ~ sex , ncvs_design , svytotal )

Descriptive Statistics

Calculate the mean (average) of a linear variable, overall and by groups:

svymean( ~ victim , ncvs_design )

svyby( ~ victim , ~ sex , ncvs_design , svymean )

Calculate the distribution of a categorical variable, overall and by groups:

svymean( ~ current_marital_status , ncvs_design )

svyby( ~ current_marital_status , ~ sex , ncvs_design , svymean )

Calculate the sum of a linear variable, overall and by groups:

svytotal( ~ victim , ncvs_design )

svyby( ~ victim , ~ sex , ncvs_design , svytotal )

Calculate the weighted sum of a categorical variable, overall and by groups:

svytotal( ~ current_marital_status , ncvs_design )

svyby( ~ current_marital_status , ~ sex , ncvs_design , svytotal )

Calculate the median (50th percentile) of a linear variable, overall and by groups:

svyquantile( ~ victim , ncvs_design , 0.5 )

svyby( 
    ~ victim , 
    ~ sex , 
    ncvs_design , 
    svyquantile , 
    0.5 ,
    ci = TRUE 
)

Estimate a ratio:

svyratio( 
    numerator = ~ times_moved_in_prior_five_years , 
    denominator = ~ linear_age , 
    ncvs_design ,
    na.rm = TRUE
)

Subsetting

Restrict the survey design to elderly americans:

sub_ncvs_design <- subset( ncvs_design , linear_age >= 65 )

Calculate the mean (average) of this subset:

svymean( ~ victim , sub_ncvs_design )

Measures of Uncertainty

Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:

this_result <- svymean( ~ victim , ncvs_design )

coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )

grouped_result <-
    svyby( 
        ~ victim , 
        ~ sex , 
        ncvs_design , 
        svymean 
    )
    
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )

Calculate the degrees of freedom of any survey design object:

degf( ncvs_design )

Calculate the complex sample survey-adjusted variance of any statistic:

svyvar( ~ victim , ncvs_design )

Include the complex sample design effect in the result for a specific statistic:

# SRS without replacement
svymean( ~ victim , ncvs_design , deff = TRUE )

# SRS with replacement
svymean( ~ victim , ncvs_design , deff = "replace" )

Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See ?svyciprop for alternatives:

svyciprop( ~ household_income_75k , ncvs_design ,
    method = "likelihood" )

Regression Models and Tests of Association

Perform a design-based t-test:

svyttest( victim ~ household_income_75k , ncvs_design )

Perform a chi-squared test of association for survey data:

svychisq( 
    ~ household_income_75k + current_marital_status , 
    ncvs_design 
)

Perform a survey-weighted generalized linear model:

glm_result <- 
    svyglm( 
        victim ~ household_income_75k + current_marital_status , 
        ncvs_design 
    )

summary( glm_result )

Replication Example

This example matches the 1994 and 2022 victimization rates and SEs in Appendix Table 1:

new_prevalence_design <-
    svydesign( 
        ~ v2118 ,
        strata = ~ interaction( yr_grp , v2117 ) ,
        data = ncvs_person_df ,
        weights = ~ prev_wgt ,
        nest = TRUE
    )

new_prevalence_results <-
    svyby( 
        ~ as.numeric( violent_year > 0 ) , 
        ~ year , 
        new_prevalence_design , 
        svymean
    )

# match new method (wgt_ovam) 1994 and 2022 estimates
stopifnot( 
    round( coef( new_prevalence_results )[ c( 1 , nrow( new_prevalence_results ) ) ] , 4 ) == 
    c( 0.0442 , 0.0151 )
)

# match new method (wgt_ovam) 1994 and 2022 standard errors
stopifnot( 
    round( SE( new_prevalence_results )[ c( 1 , nrow( new_prevalence_results ) ) ] , 5 ) == 
    c( 0.0010 , 0.00054 )
)

old_prevalence_design <-
    svydesign( 
        ~ v2118 ,
        strata = ~ interaction( yr_grp , v2117 ) ,
        data = ncvs_person_df ,
        weights = ~ wgtpercy ,
        nest = TRUE
    )

old_prevalence_results <-
    svyby(
        ~ as.numeric( violent_year > 0 ) ,
        ~ year ,
        old_prevalence_design ,
        svymean
    )

# match old method (wgtpercy) 1994 and 2022 estimates
stopifnot( 
    round( coef( old_prevalence_results )[ c( 1 , nrow( old_prevalence_results ) ) ] , 4 ) == 
    c( 0.0328 , 0.0124 )
)

# match old method (wgtpercy) 1994 and 2022 standard errors
stopifnot( 
    round( SE( old_prevalence_results )[ c( 1 , nrow( old_prevalence_results ) ) ] , 5 ) == 
    c( 0.00075 , 0.00042 )
)

Analysis Examples with srvyr  

The R srvyr library calculates summary statistics from survey data, such as the mean, total or quantile using dplyr-like syntax. srvyr allows for the use of many verbs, such as summarize, group_by, and mutate, the convenience of pipe-able functions, the tidyverse style of non-standard evaluation and more consistent return types than the survey package. This vignette details the available features. As a starting point for NCVS users, this code replicates previously-presented examples:

library(srvyr)
ncvs_srvyr_design <- as_survey( ncvs_design )

Calculate the mean (average) of a linear variable, overall and by groups:

ncvs_srvyr_design %>%
    summarize( mean = survey_mean( victim ) )

ncvs_srvyr_design %>%
    group_by( sex ) %>%
    summarize( mean = survey_mean( victim ) )