Progress in International Reading Literacy Study (PIRLS)

License: GPL v3 Github Actions Badge

A comparative study of student achievement in reading and literacy across more than 50 nations.

  • Grade-specific tables with one record per school, student, teacher, plus files containing student achievement, home background, student-teacher linkage, and within-country scoring reliability.

  • A complex survey generalizing to fourth-grade populations of participating countries.

  • Released quinquennially since 2001.

  • Funded by the International Association for the Evaluation of Educational Achievement, run at BC.


Please skim before you begin:

  1. PIRLS 2021 User Guide for the International Database

  2. Methods and Procedures: PIRLS 2021 Technical Report

  3. A haiku regarding this microdata:

# lascaux canary
# glyph jump reveal caged bard notes
# cryogenesis

Function Definitions

This survey uses a multiply-imputed variance estimation technique described in Methods Chapter 13. Most users do not need to study this function carefully. Define a function specific to only this dataset:

pirls_MIcombine <-
    function (results, variances, call = sys.call(), df.complete = Inf, ...) {
        m <- length(results)
        oldcall <- attr(results, "call")
        if (missing(variances)) {
            variances <- suppressWarnings(lapply(results, vcov))
            results <- lapply(results, coef)
        }
        vbar <- variances[[1]]
        cbar <- results[[1]]
        for (i in 2:m) {
            cbar <- cbar + results[[i]]
            vbar <- vbar + variances[[i]]
        }
        cbar <- cbar/m
        vbar <- vbar/m

        # MODIFICATION
        # evar <- var(do.call("rbind", results))
        evar <- sum( ( unlist( results ) - cbar )^2 / 4 )

        
        r <- (1 + 1/m) * evar/vbar
        df <- (m - 1) * (1 + 1/r)^2
        if (is.matrix(df)) df <- diag(df)
        if (is.finite(df.complete)) {
            dfobs <- ((df.complete + 1)/(df.complete + 3)) * df.complete *
            vbar/(vbar + evar)
            if (is.matrix(dfobs)) dfobs <- diag(dfobs)
            df <- 1/(1/dfobs + 1/df)
        }
        if (is.matrix(r)) r <- diag(r)
        rval <- list(coefficients = cbar, variance = vbar + evar *
        (m + 1)/m, call = c(oldcall, call), nimp = m, df = df,
        missinfo = (r + 2/(df + 3))/(r + 1))
        class(rval) <- "MIresult"
        rval
    }

Download, Import, Preparation

Download and unzip the 2021 fourth grade international database:

library(httr)

tf <- tempfile()

this_url <- "https://pirls2021.org/data/downloads/P21_Data_R.zip"

GET( this_url , write_disk( tf ) , progress() )

unzipped_files <- unzip( tf , exdir = tempdir() )

Import and stack each of the student context data files for Abu Dhabi through Bulgaria:

library(haven)

# limit unzipped files to those starting with `asg` followed by three letters followed by `r5`
asg_fns <-
    unzipped_files[ 
        grepl( 
            '^asg[a-z][a-z][a-z]r5' , 
            basename( unzipped_files ) , 
            ignore.case = TRUE 
        ) 
    ]

# further limit asg files to the first ten countries
countries_thru_bulgaria <-
    c("aad", "adu", "alb", "are", "aus", "aut", "aze", "bfl", "bfr", "bgr")

fns_thru_bulgaria <-
    paste0( paste0( '^asg' , countries_thru_bulgaria , 'r5' ) , collapse = "|" )

asg_aad_bgr_fns <-
    asg_fns[ grepl( fns_thru_bulgaria , basename( asg_fns ) , ignore.case = TRUE ) ]

pirls_df <- NULL

for( rdata_fn in asg_aad_bgr_fns ){

    this_tbl_name <- load( rdata_fn )
    
    this_tbl <- get( this_tbl_name ) ; rm( this_tbl_name )
    
    this_tbl <- zap_labels( this_tbl )
    
    this_df <- data.frame( this_tbl )
    
    names( this_df ) <- tolower( names( this_df ) )
    
    pirls_df <- rbind( pirls_df , this_df )
    
}

# order the data.frame by unique student id
pirls_df <- pirls_df[ with( pirls_df , order( idcntry , idstud ) ) , ]

Save Locally  

Save the object at any point:

# pirls_fn <- file.path( path.expand( "~" ) , "PIRLS" , "this_file.rds" )
# saveRDS( pirls_df , file = pirls_fn , compress = FALSE )

Load the same object:

# pirls_df <- readRDS( pirls_fn )

Survey Design Definition

Construct a multiply-imputed, complex sample survey design:

From among possibly plausible values, determine all columns that are multiply-imputed plausible values:

# identify all columns ending with `01` thru `05`
ppv <- grep( "(.*)0[1-5]$" , names( pirls_df ) , value = TRUE )

# remove those ending digits
ppv_prefix <- gsub( "0[1-5]$" , "" , ppv )

# identify each of the possibilities with exactly five matches (five implicates)
pv <- names( table( ppv_prefix )[ table( ppv_prefix ) == 5 ] )

# identify each of the `01` thru `05` plausible value columns
pv_columns <-
    grep( 
        paste0( "^" , pv , "0[1-5]$" , collapse = "|" ) , 
        names( pirls_df ) , 
        value = TRUE 
    )

Extract those multiply-imputed columns into a separate data.frame, then remove them from the source:

pv_wide_df <- pirls_df[ c( 'idcntry' , 'idstud' , pv_columns ) ]

pirls_df[ pv_columns ] <- NULL

Reshape these columns from one record per student to one record per student per implicate:

pv_long_df <- 
    reshape( 
        pv_wide_df , 
        varying = lapply( paste0( pv , '0' ) , paste0 , 1:5 ) , 
        direction = 'long' , 
        timevar = 'implicate' , 
        idvar = c( 'idcntry' , 'idstud' ) 
    )

names( pv_long_df ) <- gsub( "01$" , "" , names( pv_long_df ) )

Merge the columns from the source data.frame onto the one record per student per implicate data.frame:

pirls_long_df <- merge( pirls_df , pv_long_df )

pirls_long_df <- pirls_long_df[ with( pirls_long_df , order( idcntry , idstud ) ) , ]

stopifnot( nrow( pirls_long_df ) == nrow( pv_long_df ) )

stopifnot( nrow( pirls_long_df ) / 5 == nrow( pirls_df ) )

Divide the five plausible value implicates into a list with five data.frames based on the implicate number:

pirls_list <- split( pirls_long_df , pirls_long_df[ , 'implicate' ] )

Construct a replicate weights table following the estimation technique described in Methods Chapter 13:

weights_df <- pirls_df[ c( 'jkrep' , 'jkzone' ) ]

for( j in 1:75 ){
    for( i in 0:1 ){
        weights_df[ weights_df[ , 'jkzone' ] != j , paste0( 'rw' , i , j ) ] <- 1
        
        weights_df[ weights_df[ , 'jkzone' ] == j , paste0( 'rw' , i , j ) ] <- 
            2 * ( weights_df[ weights_df[ , 'jkzone' ] == j , 'jkrep' ] == i )
    }
}

weights_df[ c( 'jkrep' , 'jkzone' ) ] <- NULL

Define the design:

library(survey)
library(mitools)

pirls_design <- 
    svrepdesign(
        weights = ~totwgt ,
        repweights = weights_df , 
        data = imputationList( pirls_list ) ,
        type = "other" ,
        scale = 0.5 ,
        rscales = rep( 1 , 150 ) ,
        combined.weights = FALSE ,
        mse = TRUE
    )

Variable Recoding

Add new columns to the data set:

pirls_design <- 
    update( 
        pirls_design , 
        
        one = 1 ,
        
        countries_thru_bulgaria = 
        
            factor( 
            
                as.numeric( idcntry ) ,
                
                levels = c(7842L, 7841L, 8L, 784L, 36L, 40L, 31L, 956L, 957L, 100L) ,

                labels =
                    c("Abu Dhabi, UAE", "Dubai, UAE", "Albania", "UAE", "Australia", "Austria",
                    "Azerbaijan", "Belgium (Flemish)", "Belgium (French)","Bulgaria")
                
            ) ,
        
        sex = factor( itsex , levels = 1:2 , labels = c( "female" , "male" ) ) ,
        
        always_speak_language_of_test_at_home =
            ifelse( asbg03 %in% 1:4 , as.numeric( asbg03 == 1 ) , NA )

    )

Analysis Examples with the survey library  

Unweighted Counts

Count the unweighted number of records in the survey sample, overall and by groups:

pirls_MIcombine( with( pirls_design , svyby( ~ one , ~ one , unwtd.count ) ) )

pirls_MIcombine( with( pirls_design , svyby( ~ one , ~ sex , unwtd.count ) ) )

Weighted Counts

Count the weighted size of the generalizable population, overall and by groups:

pirls_MIcombine( with( pirls_design , svytotal( ~ one ) ) )

pirls_MIcombine( with( pirls_design ,
    svyby( ~ one , ~ sex , svytotal )
) )

Descriptive Statistics

Calculate the mean (average) of a linear variable, overall and by groups:

pirls_MIcombine( with( pirls_design , svymean( ~ asrrea , na.rm = TRUE ) ) )

pirls_MIcombine( with( pirls_design ,
    svyby( ~ asrrea , ~ sex , svymean , na.rm = TRUE )
) )

Calculate the distribution of a categorical variable, overall and by groups:

pirls_MIcombine( with( pirls_design , svymean( ~ countries_thru_bulgaria ) ) )

pirls_MIcombine( with( pirls_design ,
    svyby( ~ countries_thru_bulgaria , ~ sex , svymean )
) )

Calculate the sum of a linear variable, overall and by groups:

pirls_MIcombine( with( pirls_design , svytotal( ~ asrrea , na.rm = TRUE ) ) )

pirls_MIcombine( with( pirls_design ,
    svyby( ~ asrrea , ~ sex , svytotal , na.rm = TRUE )
) )

Calculate the weighted sum of a categorical variable, overall and by groups:

pirls_MIcombine( with( pirls_design , svytotal( ~ countries_thru_bulgaria ) ) )

pirls_MIcombine( with( pirls_design ,
    svyby( ~ countries_thru_bulgaria , ~ sex , svytotal )
) )

Calculate the median (50th percentile) of a linear variable, overall and by groups:

pirls_MIcombine( with( pirls_design ,
    svyquantile(
        ~ asrrea ,
        0.5 , se = TRUE , na.rm = TRUE 
) ) )

pirls_MIcombine( with( pirls_design ,
    svyby(
        ~ asrrea , ~ sex , svyquantile ,
        0.5 , se = TRUE ,
        ci = TRUE , na.rm = TRUE
) ) )

Estimate a ratio:

pirls_MIcombine( with( pirls_design ,
    svyratio( numerator = ~ asrlit , denominator = ~ asrrea )
) )

Subsetting

Restrict the survey design to Australia, Austria, Azerbaijan, Belgium (French):

sub_pirls_design <- subset( pirls_design , idcntry %in% c( 36 , 40 , 31 , 956 ) )

Calculate the mean (average) of this subset:

pirls_MIcombine( with( sub_pirls_design , svymean( ~ asrrea , na.rm = TRUE ) ) )

Measures of Uncertainty

Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:

this_result <-
    pirls_MIcombine( with( pirls_design ,
        svymean( ~ asrrea , na.rm = TRUE )
    ) )

coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )

grouped_result <-
    pirls_MIcombine( with( pirls_design ,
        svyby( ~ asrrea , ~ sex , svymean , na.rm = TRUE )
    ) )

coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )

Calculate the degrees of freedom of any survey design object:

degf( pirls_design$designs[[1]] )

Calculate the complex sample survey-adjusted variance of any statistic:

pirls_MIcombine( with( pirls_design , svyvar( ~ asrrea , na.rm = TRUE ) ) )

Include the complex sample design effect in the result for a specific statistic:

# SRS without replacement
pirls_MIcombine( with( pirls_design ,
    svymean( ~ asrrea , na.rm = TRUE , deff = TRUE )
) )

# SRS with replacement
pirls_MIcombine( with( pirls_design ,
    svymean( ~ asrrea , na.rm = TRUE , deff = "replace" )
) )

Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See ?svyciprop for alternatives:

# MIsvyciprop( ~ always_speak_language_of_test_at_home , pirls_design ,
#   method = "likelihood" , na.rm = TRUE )

Regression Models and Tests of Association

Perform a design-based t-test:

# MIsvyttest( asrrea ~ always_speak_language_of_test_at_home , pirls_design )

Perform a chi-squared test of association for survey data:

# MIsvychisq( ~ always_speak_language_of_test_at_home + countries_thru_bulgaria , pirls_design )

Perform a survey-weighted generalized linear model:

glm_result <- 
    pirls_MIcombine( with( pirls_design ,
        svyglm( asrrea ~ always_speak_language_of_test_at_home + countries_thru_bulgaria )
    ) )
    
summary( glm_result )

Replication Example

This example matches the mean proficiency and standard error of the Australia row of the Summary Statistics and Standard Errors for Proficiency in Overall Reading table from the Appendix 13A: Summary Statistics and Standard Errors for Proficiency in Reading:

australia_design <- subset( pirls_design , countries_thru_bulgaria %in% "Australia" )

stopifnot( nrow( australia_design ) == 5487 )

result <- pirls_MIcombine( with( australia_design , svymean( ~ asrrea ) ) )

stopifnot( round( coef( result ) , 3 ) == 540.134 )

stopifnot( round( SE( result ) , 3 ) == 1.728 )

This example matches the jackknife sampling, imputation, and total variances of the same row:

australia_fn <- unzipped_files[ grepl( 'ASGAUS' , basename( unzipped_files ) ) ]
australia_tbl_name <- load( australia_fn )
australia_tbl <- get( australia_tbl_name ) ; rm( australia_tbl_name )
australia_tbl <- zap_labels( australia_tbl )
australia_df <- data.frame( australia_tbl )
names( australia_df ) <- tolower( names( australia_df ) )

estimate <-
    mean( c(
        with( australia_df , weighted.mean( asrrea01 , totwgt ) ) ,
        with( australia_df , weighted.mean( asrrea02 , totwgt ) ) ,
        with( australia_df , weighted.mean( asrrea03 , totwgt ) ) ,
        with( australia_df , weighted.mean( asrrea04 , totwgt ) ) ,
        with( australia_df , weighted.mean( asrrea05 , totwgt ) )
    ) )

stopifnot( round( estimate , 3 ) == 540.134 )

for( k in 1:5 ){

    this_variance <- 0
    
    for( j in 1:75 ){
        for( i in 0:1 ){
            this_variance <- 
                this_variance + 
                ( 
                    weighted.mean( 
                        australia_df[ , paste0( 'asrrea0' , k ) ] , 
                        ifelse( 
                            j == australia_df[ , 'jkzone' ] , 
                            australia_df[ , 'totwgt' ] * 2 * ( australia_df[ , 'jkrep' ] == i ) , 
                            australia_df[ , 'totwgt' ] 
                        )
                    ) -
                    weighted.mean( 
                        australia_df[ , paste0( 'asrrea0' , k ) ] , 
                        australia_df[ , 'totwgt' ]
                    )
                )^2
        }
    }
    
    assign( paste0( 'v' , k ) , this_variance * 0.5 )

}

sampling_variance <- mean( c( v1 , v2 , v3 , v4 , v5 ) )
stopifnot( round( sampling_variance , 3 ) == 2.653 )

imputation_variance <-
    ( 6 / 5 ) * 
    ( 
        ( ( with( australia_df , weighted.mean( asrrea01 , totwgt ) ) - estimate )^2 / 4 ) +
        ( ( with( australia_df , weighted.mean( asrrea02 , totwgt ) ) - estimate )^2 / 4 ) +
        ( ( with( australia_df , weighted.mean( asrrea03 , totwgt ) ) - estimate )^2 / 4 ) +
        ( ( with( australia_df , weighted.mean( asrrea04 , totwgt ) ) - estimate )^2 / 4 ) +
        ( ( with( australia_df , weighted.mean( asrrea05 , totwgt ) ) - estimate )^2 / 4 ) 
    )

stopifnot( round( imputation_variance , 3 ) == 0.333 )

stopifnot( round( sampling_variance + imputation_variance , 3 ) == 2.987 )