Exame Nacional do Ensino Medio (ENEM)
Contributed by Dr. Djalma Pessoa <pessoad@gmail.com>
The Exame Nacional do Ensino Medio (ENEM) contains the standardized test results of most Brazilian high school students.
An annual table with one row per student.
Updated annually since 1998.
Maintained by the Brazil’s Instituto Nacional de Estudos e Pesquisas Educacionais Anisio Teixeira (INEP)
Simplified Download and Importation
The R lodown
package easily downloads and imports all available ENEM microdata by simply specifying "enem"
with an output_dir =
parameter in the lodown()
function. Depending on your internet connection and computer processing speed, you might prefer to run this step overnight.
library(lodown)
lodown( "enem" , output_dir = file.path( path.expand( "~" ) , "ENEM" ) )
lodown
also provides a catalog of available microdata extracts with the get_catalog()
function. After requesting the ENEM catalog, you could pass a subsetted catalog through the lodown()
function in order to download and import specific extracts (rather than all available extracts).
library(lodown)
# examine all available ENEM microdata files
enem_cat <-
get_catalog( "enem" ,
output_dir = file.path( path.expand( "~" ) , "ENEM" ) )
# 2015 only
enem_cat <- subset( enem_cat , year == 2015 )
# download the microdata to your local computer
enem_cat <- lodown( "enem" , enem_cat )
Analysis Examples with SQL and RSQLite
Connect to a database:
library(DBI)
dbdir <- file.path( path.expand( "~" ) , "ENEM" , "SQLite.db" )
db <- dbConnect( RSQLite::SQLite() , dbdir )
Variable Recoding
Add new columns to the data set:
dbSendQuery( db , "ALTER TABLE microdados_enem_2015 ADD COLUMN female INTEGER" )
dbSendQuery( db ,
"UPDATE microdados_enem_2015
SET female =
CASE WHEN tp_sexo = 2 THEN 1 ELSE 0 END"
)
dbSendQuery( db , "ALTER TABLE microdados_enem_2015 ADD COLUMN fathers_education INTEGER" )
dbSendQuery( db ,
"UPDATE microdados_enem_2015
SET fathers_education =
CASE WHEN q001 = 1 THEN '01 - nao estudou'
WHEN q001 = 2 THEN '02 - 1 a 4 serie'
WHEN q001 = 3 THEN '03 - 5 a 8 serie'
WHEN q001 = 4 THEN '04 - ensino medio incompleto'
WHEN q001 = 5 THEN '05 - ensino medio'
WHEN q001 = 6 THEN '06 - ensino superior incompleto'
WHEN q001 = 7 THEN '07 - ensino superior'
WHEN q001 = 8 THEN '08 - pos-graduacao'
WHEN q001 = 9 THEN '09 - nao estudou' ELSE NULL END"
)
Unweighted Counts
Count the unweighted number of records in the SQL table, overall and by groups:
dbGetQuery( db , "SELECT COUNT(*) FROM microdados_enem_2015" )
dbGetQuery( db ,
"SELECT
fathers_education ,
COUNT(*)
FROM microdados_enem_2015
GROUP BY fathers_education"
)
Descriptive Statistics
Calculate the mean (average) of a linear variable, overall and by groups:
dbGetQuery( db , "SELECT AVG( nota_mt ) FROM microdados_enem_2015" )
dbGetQuery( db ,
"SELECT
fathers_education ,
AVG( nota_mt ) AS mean_nota_mt
FROM microdados_enem_2015
GROUP BY fathers_education"
)
Calculate the distribution of a categorical variable:
dbGetQuery( db ,
"SELECT
uf_residencia ,
COUNT(*) / ( SELECT COUNT(*) FROM microdados_enem_2015 )
AS share_uf_residencia
FROM microdados_enem_2015
GROUP BY uf_residencia"
)
Calculate the sum of a linear variable, overall and by groups:
dbGetQuery( db , "SELECT SUM( nota_mt ) FROM microdados_enem_2015" )
dbGetQuery( db ,
"SELECT
fathers_education ,
SUM( nota_mt ) AS sum_nota_mt
FROM microdados_enem_2015
GROUP BY fathers_education"
)
Calculate the 25th, median, and 75th percentiles of a linear variable, overall and by groups:
RSQLite::initExtension( db )
dbGetQuery( db ,
"SELECT
LOWER_QUARTILE( nota_mt ) ,
MEDIAN( nota_mt ) ,
UPPER_QUARTILE( nota_mt )
FROM microdados_enem_2015"
)
dbGetQuery( db ,
"SELECT
fathers_education ,
LOWER_QUARTILE( nota_mt ) AS lower_quartile_nota_mt ,
MEDIAN( nota_mt ) AS median_nota_mt ,
UPPER_QUARTILE( nota_mt ) AS upper_quartile_nota_mt
FROM microdados_enem_2015
GROUP BY fathers_education"
)
Subsetting
Limit your SQL analysis to took mathematics exam with WHERE
:
dbGetQuery( db ,
"SELECT
AVG( nota_mt )
FROM microdados_enem_2015
WHERE in_presenca_mt = 1"
)
Measures of Uncertainty
Calculate the variance and standard deviation, overall and by groups:
RSQLite::initExtension( db )
dbGetQuery( db ,
"SELECT
VARIANCE( nota_mt ) ,
STDEV( nota_mt )
FROM microdados_enem_2015"
)
dbGetQuery( db ,
"SELECT
fathers_education ,
VARIANCE( nota_mt ) AS var_nota_mt ,
STDEV( nota_mt ) AS stddev_nota_mt
FROM microdados_enem_2015
GROUP BY fathers_education"
)
Regression Models and Tests of Association
Perform a t-test:
enem_slim_df <-
dbGetQuery( db ,
"SELECT
nota_mt ,
female ,
uf_residencia
FROM microdados_enem_2015"
)
t.test( nota_mt ~ female , enem_slim_df )
Perform a chi-squared test of association:
this_table <-
table( enem_slim_df[ , c( "female" , "uf_residencia" ) ] )
chisq.test( this_table )
Perform a generalized linear model:
glm_result <-
glm(
nota_mt ~ female + uf_residencia ,
data = enem_slim_df
)
summary( glm_result )
Analysis Examples with dplyr
The R dplyr
library offers an alternative grammar of data manipulation to base R and SQL syntax. dplyr offers many verbs, such as summarize
, group_by
, and mutate
, the convenience of pipe-able functions, and the tidyverse
style of non-standard evaluation. This vignette details the available features. As a starting point for ENEM users, this code replicates previously-presented examples:
library(dplyr)
library(dbplyr)
dplyr_db <- dplyr::src_sqlite( dbdir )
enem_tbl <- tbl( dplyr_db , 'microdados_enem_2015' )
Calculate the mean (average) of a linear variable, overall and by groups:
enem_tbl %>%
summarize( mean = mean( nota_mt ) )
enem_tbl %>%
group_by( fathers_education ) %>%
summarize( mean = mean( nota_mt ) )
Replication Example
dbGetQuery( db , "SELECT COUNT(*) FROM microdados_enem_2015" )